1FVS

SOLUTION STRUCTURE OF THE YEAST COPPER TRANSPORTER DOMAIN CCC2A IN THE APO AND CU(I) LOAD STATES


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(I)-loaded states.

Banci, L.Bertini, I.Ciofi-Baffoni, S.Huffman, D.L.O'Halloran, T.V.

(2001) J Biol Chem 276: 8415-8426

  • DOI: https://doi.org/10.1074/jbc.M008389200
  • Primary Citation of Related Structures:  
    1FVQ, 1FVS

  • PubMed Abstract: 

    Ccc2 is an intracellular copper transporter in Saccharomyces cerevisiae and is a physiological target of the copper chaperone Atx1. Here we describe the solution structure of the first N-terminal MTCXXC metal-binding domain, Ccc2a, both in the presence and absence of Cu(I). For Cu(I)-Ccc2a, 1944 meaningful nuclear Overhauser effects were used to obtain a family of 35 structures with root mean square deviation to the average structure of 0.36 +/- 0.06 A for the backbone and 0.79 +/- 0.05 A for the heavy atoms. For apo-Ccc2a, 1970 meaningful nuclear Overhauser effects have been used with 35 (3)J(HNHalpha) to obtain a family of 35 structures with root mean square deviation to the average structure of 0.38 +/- 0.06 A for the backbone and 0.82 +/- 0.07 A for the heavy atoms. The protein exhibits a betaalphabetabetaalphabeta, ferrodoxin-like fold similar to that of its target Atx1 and that of a human counterpart, the fourth metal-binding domain of the Menkes protein. The overall fold remains unchanged upon copper loading, but the copper-binding site itself becomes less disordered. The helical context of the copper-binding site, and the copper-induced conformational changes in Ccc2a differ from those in Atx1. Ccc2a presents a conserved acidic surface which complements the basic surface of Atx1 and a hydrophobic surface. These results open new mechanistic aspects of copper transporter domains with physiological copper donor and acceptor proteins.


  • Organizational Affiliation

    Magnetic Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, 50019, Italy.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
COPPER-TRANSPORTING ATPASE72Saccharomyces cerevisiaeMutation(s): 0 
EC: 7.2.2.8
UniProt
Find proteins for P38995 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P38995 
Go to UniProtKB:  P38995
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP38995
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CU
Query on CU

Download Ideal Coordinates CCD File 
B [auth A]COPPER (II) ION
Cu
JPVYNHNXODAKFH-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-03-14
    Type: Initial release
  • Version 1.1: 2007-10-21
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-23
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2024-05-22
    Changes: Data collection