1EJ8

CRYSTAL STRUCTURE OF DOMAIN 2 OF THE YEAST COPPER CHAPERONE FOR SUPEROXIDE DISMUTASE (LYS7) AT 1.55 A RESOLUTION


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.55 Å
  • R-Value Free: 0.258 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

X-ray crystallographic and analytical ultracentrifugation analyses of truncated and full-length yeast copper chaperones for SOD (LYS7): a dimer-dimer model of LYS7-SOD association and copper delivery.

Hall, L.T.Sanchez, R.J.Holloway, S.P.Zhu, H.Stine, J.E.Lyons, T.J.Demeler, B.Schirf, V.Hansen, J.C.Nersissian, A.M.Valentine, J.S.Hart, P.J.

(2000) Biochemistry 39: 3611-3623

  • DOI: https://doi.org/10.1021/bi992716g
  • Primary Citation of Related Structures:  
    1EJ8

  • PubMed Abstract: 

    Copper-zinc superoxide dismutase (CuZnSOD) acquires its catalytic copper ion through interaction with another polypeptide termed the copper chaperone for SOD. Here, we combine X-ray crystallographic and analytical ultracentrifugation methods to characterize rigorously both truncated and full-length forms of apo-LYS7, the yeast copper chaperone for SOD. The 1.55 A crystal structure of LYS7 domain 2 alone (L7D2) was determined by multiple-isomorphous replacement (MIR) methods. The monomeric structure reveals an eight-stranded Greek key beta-barrel similar to that found in yeast CuZnSOD, but it is substantially elongated at one end where the loop regions of the beta-barrel come together to bind a calcium ion. In agreement with the crystal structure, sedimentation velocity experiments indicate that L7D2 is monomeric in solution under all conditions and concentrations that were tested. In contrast, sedimentation velocity and sedimentation equilibrium experiments show that full-length apo-LYS7 exists in a monomer-dimer equilibrium under nonreducing conditions. This equilibrium is shifted toward the dimer by approximately 1 order of magnitude in the presence of phosphate anion. Although the basis for the specificity of the LYS7-SOD interaction as well as the exact mechanism of copper insertion into SOD is unknown, it has been suggested that a monomer of LYS7 and a monomer of SOD may associate to form a heterodimer via L7D2. The data presented here, however, taken together with previously published crystallographic and analytical gel filtration data on full-length LYS7, suggest an alternative model wherein a dimer of LYS7 interacts with a dimer of yeast CuZnSOD. The advantages of the dimer-dimer model over the heterodimer model are enumerated.


  • Organizational Affiliation

    Center for Biomolecular Structure Analysis and Center for Analytical Ultracentrifugation of Macromolecular Assemblies, Department of Biochemistry, University of Texas Health Science Center at San Antonio, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
LYS7140Saccharomyces cerevisiaeMutation(s): 0 
UniProt
Find proteins for P40202 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P40202 
Go to UniProtKB:  P40202
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP40202
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download Ideal Coordinates CCD File 
B [auth A]CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.55 Å
  • R-Value Free: 0.258 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 34.154α = 90
b = 46.326β = 90
c = 73.907γ = 90
Software Package:
Software NamePurpose
SHARPphasing
SHELXL-97refinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2000-04-05
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-07
    Changes: Data collection, Database references, Derived calculations