1EIH

SOLUTION STRUCTURE OF THE HUMAN CHEMOKINE EOTAXIN-2


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with acceptable covalent geometry,structures with the least restraint violations,structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

NMR solution structure and receptor peptide binding of the CC chemokine eotaxin-2.

Mayer, K.L.Stone, M.J.

(2000) Biochemistry 39: 8382-8395

  • DOI: https://doi.org/10.1021/bi000523j
  • Primary Citation of Related Structures:  
    1EIG, 1EIH

  • PubMed Abstract: 

    The human CC chemokine eotaxin-2 is a specific agonist for the chemokine receptor CCR3 and may play a role in the recruitment of eosinophils in allergic diseases and parasitic infections. We report the solution structure of eotaxin-2 determined using heteronuclear and triple resonance NMR methods. A family of 20 structures was calculated by hybrid distance geometry-simulated annealing from 854 NOE distance restraints, 48 dihedral angle restraints, and 12 hydrogen bond restraints. The structure of eotaxin-2 (73 amino acid residues) consists of a helical turn (residues 17-20) followed by a 3-stranded antiparallel beta-sheet (residues 22-26, 37-41, and 44-49) and an alpha-helix (residues 54-66). The N-loop (residues 9-16) is packed against both the sheet and the helix with the two conserved disulfide bonds tethering the N-terminal/N-loop region to the beta-sheet. The average backbone and heavy atom rmsd values of the 20 structures (residues 7-66) are 0.52 and 1.13 A, respectively. A linear peptide corresponding to the N-terminal region of CCR3 binds to eotaxin-2, inducing concentration-dependent chemical shift changes or line broadening of many residues. The distribution of these residues suggests that the peptide binds into an extended groove located at the interface between the N-loop and the beta2-beta3 hairpin. The receptor peptide may also interact with the N-terminus of the chemokine and part of the alpha-helix. Comparison of the eotaxin-2 structure with those of related chemokines indicates several structural features that may contribute to receptor specificity.


  • Organizational Affiliation

    Department of Chemistry, Indiana University, Bloomington 47405-0001, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
EOTAXIN-273Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for O00175 (Homo sapiens)
Explore O00175 
Go to UniProtKB:  O00175
PHAROS:  O00175
GTEx:  ENSG00000106178 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO00175
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with acceptable covalent geometry,structures with the least restraint violations,structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-12-06
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-16
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2024-10-30
    Changes: Data collection, Structure summary