Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6 dehydratase provides insights into the enzyme's catalytic mechanism and regulation by GDP-fucose.
Somoza, J.R., Menon, S., Schmidt, H., Joseph-McCarthy, D., Dessen, A., Stahl, M.L., Somers, W.S., Sullivan, F.X.(2000) Structure 8: 123-135
- PubMed: 10673432 
- DOI: https://doi.org/10.1016/s0969-2126(00)00088-5
- Primary Citation of Related Structures:  
1DB3 - PubMed Abstract: 
GDP-mannose 4,6 dehydratase (GMD) catalyzes the conversion of GDP-(D)-mannose to GDP-4-keto, 6-deoxy-(D)-mannose. This is the first and regulatory step in the de novo biosynthesis of GDP-(L)-fucose. Fucose forms part of a number of glycoconjugates, including the ABO blood groups and the selectin ligand sialyl Lewis X. Defects in GDP-fucose metabolism have been linked to leukocyte adhesion deficiency type II (LADII). The structure of the GDP-mannose 4,6 dehydratase apo enzyme has been determined and refined using data to 2.3 A resolution. GMD is a homodimeric protein with each monomer composed of two domains. The larger N-terminal domain binds the NADP(H) cofactor in a classical Rossmann fold and the C-terminal domain harbors the sugar-nucleotide binding site. We have determined the GMD dissociation constants for NADP, NADPH and GDP-mannose. Each GMD monomer binds one cofactor and one substrate molecule, suggesting that both subunits are catalytically competent. GDP-fucose acts as a competitive inhibitor, suggesting that it binds to the same site as GDP-mannose, providing a mechanism for the feedback inhibition of fucose biosynthesis. The X-ray structure of GMD reveals that it is a member of the short-chain dehydrogenase/reductase (SDR) family of proteins. We have modeled the binding of NADP and GDP-mannose to the enzyme and mutated four of the active-site residues to determine their function. The combined modeling and mutagenesis data suggests that at position 133 threonine substitutes serine as part of the serine-tyrosine-lysine catalytic triad common to the SDR family and Glu 135 functions as an active-site base.
Organizational Affiliation: 
Wyeth Research, Cambridge, MA 02140, USA.