1DAQ

SOLUTION STRUCTURE OF THE TYPE I DOCKERIN DOMAIN FROM THE CLOSTRIDIUM THERMOCELLUM CELLULOSOME (MINIMIZED AVERAGE STRUCTURE)


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Solution structure of a type I dockerin domain, a novel prokaryotic, extracellular calcium-binding domain.

Lytle, B.L.Volkman, B.F.Westler, W.M.Heckman, M.P.Wu, J.H.

(2001) J Mol Biol 307: 745-753

  • DOI: https://doi.org/10.1006/jmbi.2001.4522
  • Primary Citation of Related Structures:  
    1DAQ, 1DAV

  • PubMed Abstract: 

    The type I dockerin domain is responsible for incorporating its associated glycosyl hydrolase into the bacterial cellulosome, a multienzyme cellulolytic complex, via its interaction with a receptor domain (cohesin domain) of the cellulosomal scaffolding subunit. The highly conserved dockerin domain is characterized by two Ca(2+)-binding sites with sequence similarity to the EF-hand motif. Here, we present the three-dimensional solution structure of the 69 residue dockerin domain of Clostridium thermocellum cellobiohydrolase CelS. Torsion angle dynamics calculations utilizing a total of 728 NOE-derived distance constraints and 79 torsion angle restraints yielded an ensemble of 20 structures with an average backbone r.m.s.d. for residues 5 to 29 and 32 to 66 of 0.54 A from the mean structure. The structure consists of two Ca(2+)-binding loop-helix motifs connected by a linker; the E helices entering each loop of the classical EF-hand motif are absent from the dockerin domain. Each dockerin Ca(2+)-binding subdomain is stabilized by a cluster of buried hydrophobic side-chains. Structural comparisons reveal that, in its non-complexed state, the dockerin fold displays a dramatic departure from that of Ca(2+)-bound EF-hand domains. A putative cohesin-binding surface, comprised of conserved hydrophobic and basic residues, is proposed, providing new insight into cellulosome assembly.


  • Organizational Affiliation

    Department of Chemical Engineering, University of Rochester, NY 14627-0166, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ENDOGLUCANASE SS71Acetivibrio thermocellusMutation(s): 2 
EC: 3.2.1.4 (PDB Primary Data), 3.2.1.176 (UniProt)
UniProt
Find proteins for P0C2S5 (Acetivibrio thermocellus)
Explore P0C2S5 
Go to UniProtKB:  P0C2S5
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0C2S5
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-04-04
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-11-03
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2024-05-22
    Changes: Data collection