Structure of a non-psychrophilic trypsin from a cold-adapted fish species.
Schroder, H.K., Willassen, N.P., Smalas, A.O.(1998) Acta Crystallogr D Biol Crystallogr 54: 780-798
- PubMed: 9757092 
- DOI: https://doi.org/10.1107/s0907444997018611
- Primary Citation of Related Structures:  
1A0J - PubMed Abstract: 
The crystal structure of cationic trypsin (CST) from the Atlantic salmon (Salmo salar) has been refined at 1.70 A resolution. The crystals are orthorhombic, belong to space group P212121, with lattice parameters a = 65.91, b = 83.11 and c = 154.79 A, and comprise four molecules per asymmetric unit. The structure was solved by molecular replacement with AMoRe and refined with X-PLOR to an R value of 17.4% and Rfree of 21.5% for reflections |F| > 3sigmaF between 8.0 and 1.7 A resolution. The four non-crystallographic symmetry (NCS) related molecules in the asymmetric unit display r.m.s. deviations in the range 0.31-0.74 A for main-chain atoms, with the largest differences confined to two loops. One of these is the calcium-binding loop where the electron-density indicates a calcium ion for only one of the four molecules. In order to find structural rationalizations for the observed difference in thermostability and catalytic efficiency of CST, anionic salmon trypsin (AST) and bovine trypsin (BT), the three structures have been extensively compared. The largest deviations for the superimposed structures occur in the surface loops and particularly in the so-called 'autolysis loop'. Both the salmon enzymes possess a high methionine content, lower overall hydrophobicity and enhanced surface hydrophilicity, compared with BT. These properties have so far been correlated to cold-adaptation features, while in this work it is shown that the non-psychrophilic cationic salmon trypsin shares these features with the psychrophilic anionic salmon trypsin.
Organizational Affiliation: 
Protein Crystallography Group, Institute of Chemistry, Faculty of Science, University of Tromso, N-9037, Tromso, Norway.