149D

SOLUTION STRUCTURE OF A PYRIMIDINE(DOT)PURINE(DOT) PYRIMIDINE DNA TRIPLEX CONTAINING T(DOT)AT, C+(DOT)GC AND G(DOT)TA TRIPLES


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 14 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Solution structure of a pyrimidine.purine.pyrimidine DNA triplex containing T.AT, C+.GC and G.TA triples.

Radhakrishnan, I.Patel, D.J.

(1994) Structure 2: 17

  • DOI: https://doi.org/10.1016/s0969-2126(00)00005-8
  • Primary Citation of Related Structures:  
    149D

  • PubMed Abstract: 

    Under certain conditions, homopyrimidine oligonucleotides can bind to complementary homopurine sequences in homopurine-homopyrimidine segments of duplex DNA to form triple helical structures. Besides having biological implications in vivo, this property has been exploited in molecular biology applications. This approach is limited by a lack of knowledge about the recognition by the third strand of pyrimidine residues in Watson-Crick base pairs. We have therefore determined the solution structure of a pyrimidine.purine.pyrimidine (Y.RY) DNA triple helix containing a guanine residue in the third strand which was postulated to specifically recognize a thymine residue in a Watson-Crick TA base pair. The structure was solved by combining NMR-derived restraints with molecular dynamics simulations conducted in the presence of explicit solvent and counter ions. The guanine of the G-TA triple is tilted out of the plane of its target TA base pair towards the 3'-direction, to avoid a steric clash with the thymine methyl group. This allows the guanine amino protons to participate in hydrogen bonds with separate carbonyls, forming one strong bond within the G-TA triple and a weak bond to an adjacent T.AT triple. Dramatic variations in helical twist around the guanine residue lead to a novel stacking interaction. At the global level, the Y.RY DNA triplex shares several structural features with the recently solved solution structure of the R.RY DNA triplex. The formation of a G.TA triple within an otherwise pyrimidine.purine.pyrimidine DNA triplex causes conformational realignments in and around the G.TA triple. These highlight new aspects of molecular recognition that could be useful in triplex-based approaches to inhibition of gene expression and site-specific cleavage of genomic DNA.


  • Organizational Affiliation

    Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
5'-D(*CP*CP*TP*AP*TP*TP*C)-3'7N/A
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains LengthOrganismImage
5'-D(*GP*AP*AP*TP*AP*GP*G)-3'7N/A
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 3
MoleculeChains LengthOrganismImage
5'-D(*CP*TP*TP*GP*TP*CP*C)-3'7N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 14 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1994-04-30
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-16
    Changes: Database references, Derived calculations, Other