A 4'-phosphopantetheine prosthetic group is attached through a serine. This prosthetic group acts as a a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. This domain forms a four helix bundle. This family includes memb ...
A 4'-phosphopantetheine prosthetic group is attached through a serine. This prosthetic group acts as a a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. This domain forms a four helix bundle. This family includes members not included in Prosite. The inclusion of these members is supported by sequence analysis and functional evidence. The related domain of Swiss:P19828 has the attachment serine replaced by an alanine.
we have identified a conserved motif in the LOC118487 protein that we have called the CHCH motif. Alignment of this protein with related members showed the presence of three subgroups of proteins, which are called the S (Small), N (N-terminal extende ...
we have identified a conserved motif in the LOC118487 protein that we have called the CHCH motif. Alignment of this protein with related members showed the presence of three subgroups of proteins, which are called the S (Small), N (N-terminal extended) and C (C-terminal extended) subgroups. All three sub-groups of proteins have in common that they contain a predicted conserved [coiled coil 1]-[helix 1]-[coiled coil 2]-[helix 2] domain (CHCH domain). Within each helix of the CHCH domain, there are two cysteines present in a C-X9-C motif. The N-group contains an additional double helix domain, and each helix contains the C-X9-C motif. This family contains a number of characterised proteins: Cox19 protein - a nuclear gene of Saccharomyces cerevisiae, codes for an 11-kDa protein (Cox19p) required for expression of cytochrome oxidase. Because cox19 mutants are able to synthesise the mitochondrial and nuclear gene products of cytochrome oxidase, Cox19p probably functions post-translationally during assembly of the enzyme. Cox19p is present in the cytoplasm and mitochondria, where it exists as a soluble intermembrane protein. This dual location is similar to what was previously reported for Cox17p, a low molecular weight copper protein thought to be required for maturation of the CuA centre of subunit 2 of cytochrome oxidase. Cox19p have four conserved potential metal ligands, these are three cysteines and one histidine. Mrp10 - belongs to the class of yeast mitochondrial ribosomal proteins that are essential for translation [2]. Eukaryotic NADH-ubiquinone oxidoreductase 19 kDa (NDUFA8) subunit [3]. The CHCH domain was previously called DUF657 [4].
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This entry represents the C-terminal region of several NADH dehydrogenase subunit 5 proteins and is found in conjunction with Pfam:PF00361 and Pfam:PF00662.
This entry represents an amino terminal extension of Pfam:PF00361. Only NADH-Ubiquinone chain 5 and eubacterial chain L are in this family. This sub-family is part of complex I which catalyses the transfer of two electrons from NADH to ubiquinone in ...
This entry represents an amino terminal extension of Pfam:PF00361. Only NADH-Ubiquinone chain 5 and eubacterial chain L are in this family. This sub-family is part of complex I which catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane.