6EF1

Yeast 26S proteasome bound to ubiquitinated substrate (5D motor state)


Domain Annotation: ECOD Classification ECOD Database Homepage

ChainsFamily NameDomain Identifier ArchitecturePossible HomologyHomologyTopologyFamilyProvenance Source (Version)
AProteasomee6ef1A1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
BProteasomee6ef1B1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
CProteasomee6ef1C1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
DProteasomee6ef1D1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
EProteasomee6ef1E1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
FProteasomee6ef1F1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
GProteasomee6ef1G1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
HPRK03992e6ef1H2 A: alpha arraysX: Histone-likeH: Histone-relatedT: AAA+ ATPase lid domainF: PRK03992ECOD (1.6)
HSigma54_activate6ef1H3 A: a/b three-layered sandwichesX: P-loop domains-likeH: P-loop domains-relatedT: P-loop containing nucleoside triphosphate hydrolasesF: Sigma54_activatECOD (1.6)
IPRK03992e6ef1I1 A: alpha arraysX: Histone-likeH: Histone-relatedT: AAA+ ATPase lid domainF: PRK03992ECOD (1.6)
ISigma54_activate6ef1I2 A: a/b three-layered sandwichesX: P-loop domains-likeH: P-loop domains-relatedT: P-loop containing nucleoside triphosphate hydrolasesF: Sigma54_activatECOD (1.6)
JKOG0652_2nde6ef1J2 A: alpha arraysX: Histone-likeH: Histone-relatedT: AAA+ ATPase lid domainF: KOG0652_2ndECOD (1.6)
JSigma54_activate6ef1J1 A: a/b three-layered sandwichesX: P-loop domains-likeH: P-loop domains-relatedT: P-loop containing nucleoside triphosphate hydrolasesF: Sigma54_activatECOD (1.6)
KPRK03992e6ef1K1 A: alpha arraysX: Histone-likeH: Histone-relatedT: AAA+ ATPase lid domainF: PRK03992ECOD (1.6)
KSigma54_activate6ef1K2 A: a/b three-layered sandwichesX: P-loop domains-likeH: P-loop domains-relatedT: P-loop containing nucleoside triphosphate hydrolasesF: Sigma54_activatECOD (1.6)
MKOG0652_2nde6ef1M2 A: alpha arraysX: Histone-likeH: Histone-relatedT: AAA+ ATPase lid domainF: KOG0652_2ndECOD (1.6)
MSigma54_activate6ef1M1 A: a/b three-layered sandwichesX: P-loop domains-likeH: P-loop domains-relatedT: P-loop containing nucleoside triphosphate hydrolasesF: Sigma54_activatECOD (1.6)

Protein Family Annotation Pfam Database Homepage

ChainsAccessionNameDescriptionCommentsSource
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
PF17862AAA+ lid domain (AAA_lid_3)AAA+ lid domainThis entry represents the alpha helical AAA+ lid domain that is found to the C-terminus of AAA domains.Domain
PF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain
PF17862AAA+ lid domain (AAA_lid_3)AAA+ lid domainThis entry represents the alpha helical AAA+ lid domain that is found to the C-terminus of AAA domains.Domain
PF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain
PF17862AAA+ lid domain (AAA_lid_3)AAA+ lid domainThis entry represents the alpha helical AAA+ lid domain that is found to the C-terminus of AAA domains.Domain
PF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain
PF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain
PF17862AAA+ lid domain (AAA_lid_3)AAA+ lid domainThis entry represents the alpha helical AAA+ lid domain that is found to the C-terminus of AAA domains.Domain
PF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain
PF17862AAA+ lid domain (AAA_lid_3)AAA+ lid domainThis entry represents the alpha helical AAA+ lid domain that is found to the C-terminus of AAA domains.Domain
PF00004ATPase family associated with various cellular activities (AAA) (AAA)ATPase family associated with various cellular activities (AAA)AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].Domain

Gene Ontology: Gene Product Annotation Gene Ontology Database Homepage

ChainsPolymerMolecular FunctionBiological ProcessCellular Component
Proteasome subunit alpha type-1-
Proteasome subunit alpha type-2-
Proteasome subunit alpha type-3-
Proteasome subunit alpha type-4-
Proteasome subunit alpha type-5-
Proteasome subunit alpha type-6-
Probable proteasome subunit alpha type-7
26S proteasome regulatory subunit 7 homolog
26S proteasome regulatory subunit 4 homolog
26S proteasome regulatory subunit 8 homolog
26S proteasome regulatory subunit 6B homolog
26S proteasome subunit RPT4
26S proteasome regulatory subunit 6A
N [auth s]model substrate polypeptide

InterPro: Protein Family Classification InterPro Database Homepage

ChainsAccessionNameType
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
IPR050115Proteasome subunit alphaFamily
IPR023332Proteasome alpha-type subunitFamily
IPR001353Proteasome, subunit alpha/betaFamily
IPR034642Proteasome subunit alpha6Family
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
IPR050115Proteasome subunit alphaFamily
IPR023332Proteasome alpha-type subunitFamily
IPR001353Proteasome, subunit alpha/betaFamily
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
IPR050115Proteasome subunit alphaFamily
IPR023332Proteasome alpha-type subunitFamily
IPR001353Proteasome, subunit alpha/betaFamily
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
IPR050115Proteasome subunit alphaFamily
IPR023332Proteasome alpha-type subunitFamily
IPR001353Proteasome, subunit alpha/betaFamily
IPR033812Proteasome subunit alpha5Family
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
IPR050115Proteasome subunit alphaFamily
IPR023332Proteasome alpha-type subunitFamily
IPR001353Proteasome, subunit alpha/betaFamily
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
IPR050115Proteasome subunit alphaFamily
IPR023332Proteasome alpha-type subunitFamily
IPR001353Proteasome, subunit alpha/betaFamily
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
IPR050115Proteasome subunit alphaFamily
IPR023332Proteasome alpha-type subunitFamily
IPR001353Proteasome, subunit alpha/betaFamily
IPR04872326S proteasome regulatory subunit 7-like, OB domainDomain
IPR05022126S Proteasome Regulatory ATPaseFamily
IPR041569AAA ATPase, AAA+ lid domainDomain
IPR003960ATPase, AAA-type, conserved siteConserved Site
IPR003593AAA+ ATPase domainDomain
IPR003959ATPase, AAA-type, coreDomain
IPR012340Nucleic acid-binding, OB-foldHomologous Superfamily
IPR027417P-loop containing nucleoside triphosphate hydrolaseHomologous Superfamily
IPR05022126S Proteasome Regulatory ATPaseFamily
IPR041569AAA ATPase, AAA+ lid domainDomain
IPR032501Proteasomal ATPase, second OB domainDomain
IPR003960ATPase, AAA-type, conserved siteConserved Site
IPR003593AAA+ ATPase domainDomain
IPR003959ATPase, AAA-type, coreDomain
IPR012340Nucleic acid-binding, OB-foldHomologous Superfamily
IPR027417P-loop containing nucleoside triphosphate hydrolaseHomologous Superfamily
IPR05022126S Proteasome Regulatory ATPaseFamily
IPR041569AAA ATPase, AAA+ lid domainDomain
IPR032501Proteasomal ATPase, second OB domainDomain
IPR003960ATPase, AAA-type, conserved siteConserved Site
IPR003593AAA+ ATPase domainDomain
IPR003959ATPase, AAA-type, coreDomain
IPR012340Nucleic acid-binding, OB-foldHomologous Superfamily
IPR027417P-loop containing nucleoside triphosphate hydrolaseHomologous Superfamily
IPR05022126S Proteasome Regulatory ATPaseFamily
IPR032501Proteasomal ATPase, second OB domainDomain
IPR003960ATPase, AAA-type, conserved siteConserved Site
IPR003593AAA+ ATPase domainDomain
IPR003959ATPase, AAA-type, coreDomain
IPR012340Nucleic acid-binding, OB-foldHomologous Superfamily
IPR027417P-loop containing nucleoside triphosphate hydrolaseHomologous Superfamily
IPR05022126S Proteasome Regulatory ATPaseFamily
IPR041569AAA ATPase, AAA+ lid domainDomain
IPR032501Proteasomal ATPase, second OB domainDomain
IPR003960ATPase, AAA-type, conserved siteConserved Site
IPR003593AAA+ ATPase domainDomain
IPR003959ATPase, AAA-type, coreDomain
IPR012340Nucleic acid-binding, OB-foldHomologous Superfamily
IPR027417P-loop containing nucleoside triphosphate hydrolaseHomologous Superfamily
IPR05022126S Proteasome Regulatory ATPaseFamily
IPR041569AAA ATPase, AAA+ lid domainDomain
IPR032501Proteasomal ATPase, second OB domainDomain
IPR003960ATPase, AAA-type, conserved siteConserved Site
IPR003593AAA+ ATPase domainDomain
IPR003959ATPase, AAA-type, coreDomain
IPR012340Nucleic acid-binding, OB-foldHomologous Superfamily
IPR027417P-loop containing nucleoside triphosphate hydrolaseHomologous Superfamily
N [auth s]IPR004367Cyclin, C-terminal domainDomain
N [auth s]IPR048258Cyclins, cyclin-boxConserved Site
N [auth s]IPR046965Cyclin A/B-likeFamily
N [auth s]IPR006671Cyclin, N-terminalDomain
N [auth s]IPR036915Cyclin-like superfamilyHomologous Superfamily
N [auth s]IPR039361CyclinFamily
N [auth s]IPR013763Cyclin-like domainDomain