Structure of Pentavalent Phosphorous Intermediate of an Enzyme Catalyzed Phosphoryl transfer Reaction observed on cocrystallization with Glucose 1-phosphate
This family is structurally different from the alpha/beta hydrolase family (Pfam:PF00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted fo ...
This family is structurally different from the alpha/beta hydrolase family (Pfam:PF00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Swiss:P24069. The rest of the fold is composed of the core alpha/beta domain [1]. Those members with the characteristic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria [2].
This enzyme catalyses the interconversion of D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), forming beta-D-glucose 1,6-(bis)phosphate (beta-G16P) as an intermediate. It requires Mg(II) and phosphorylation of an aspartate residue at the active site. The enzyme is able to autophosphorylate itself with its substrate beta-D-glucose 1-phosphate. Although this is a slow reaction, only a single turnover is required for activation. Once the phosphorylated enzyme is formed, it generates the reaction intermediate beta-D-glucose 1,6-bisphosphate, which can be used to phosphorylate the enzyme in subsequent cycles [PMID:16784233].