GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins ...
GST conjugates reduced glutathione to a variety of targets including S-crystallin from squid, the eukaryotic elongation factor 1-gamma, the HSP26 family of stress-related proteins and auxin-regulated proteins in plants. Stringent starvation proteins in E. coli are also included in the alignment but are not known to have GST activity. The glutathione molecule binds in a cleft between N and C-terminal domains. The catalytically important residues are proposed to reside in the N-terminal domain [1]. In plants, GSTs are encoded by a large gene family (48 GST genes in Arabidopsis) and can be divided into the phi, tau, theta, zeta, and lambda classes [2].
Function: conjugation of reduced glutathione to a variety of targets. Also included in the alignment, but not GSTs: S-crystallins from squid (similarity to GST previously noted); eukaryotic elongation factors 1-gamma (not known to have GST activity a ...
Function: conjugation of reduced glutathione to a variety of targets. Also included in the alignment, but not GSTs: S-crystallins from squid (similarity to GST previously noted); eukaryotic elongation factors 1-gamma (not known to have GST activity and similarity not previously recognised); HSP26 family of stress-related proteins including auxin-regulated proteins in plants and stringent starvation proteins in E. coli (not known to have GST activity and similarity not previously recognised). The glutathione molecule binds in a cleft between the N- and C-terminal domains - the catalytically important residues are proposed to reside in the N-terminal domain [1].