1F4O

CRYSTAL STRUCTURE OF GRANCALCIN WITH BOUND CALCIUM


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.284 
  • R-Value Work: 0.228 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal structure of human grancalcin, a member of the penta-EF-hand protein family.

Jia, J.Han, Q.Borregaard, N.Lollike, K.Cygler, M.

(2000) J Mol Biol 300: 1271-1281

  • DOI: https://doi.org/10.1006/jmbi.2000.3925
  • Primary Citation of Related Structures:  
    1F4O, 1F4Q

  • PubMed Abstract: 

    Grancalcin is a Ca(2+)-binding protein expressed at high level in neutrophils. It belongs to the PEF family, proteins containing five EF-hand motifs and which are known to associate with membranes in Ca(2+)-dependent manner. Prototypic members of this family are Ca(2+)-binding domains of calpain. Our recent finding that grancalcin interacts with L-plastin, a protein known to have actin bundling activity, suggests that grancalcin may play a role in regulation of adherence and migration of neutrophils. The structure of human grancalcin has been determined at 1.9 A resolution in the absence of calcium (R-factor of 0.212 and R-free of 0.249) and at 2. 5 A resolution in the presence of calcium (R-factor of 0.226 and R-free of 0.281). The molecule is predominantly alpha-helical: it contains eight alpha-helices and only two short stretches of two-stranded beta-sheets between the loops of paired EF-hands. Grancalcin forms dimers through the association of the unpaired EF5 hands in a manner similar to that observed in calpain, confirming this mode of association as a paradigm for the PEF family. Only one Ca(2+) was found per dimer under crystallization conditions that included CaCl(2). This cation binds to EF3 in one molecule, while this site in the second molecule of the dimer is unoccupied. This unoccupied site shows higher mobility. The structure determined in the presence of calcium, although does not represent a fully Ca(2+)-loaded form, suggests that calcium induces rather small conformational rearrangements. Comparison with calpain suggests further that the relatively small magnitude of conformational changes invoked by calcium alone may be a characteristic feature of the PEF family. Moreover, the largest differences are localized to the EF1, thus supporting the notion that calcium signaling occurs through this portion of the molecule and that it may involve the N-terminal Gly/Pro rich segment. Electrostatic potential distribution shows significant differences between grancalcin and calpain domain VI demonstrating their distinct character.


  • Organizational Affiliation

    Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montréal, Québec, H4P 2R2, Canada.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GRANCALCIN
A, B
165Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P28676 (Homo sapiens)
Explore P28676 
Go to UniProtKB:  P28676
PHAROS:  P28676
GTEx:  ENSG00000115271 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP28676
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download Ideal Coordinates CCD File 
C [auth B]CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.284 
  • R-Value Work: 0.228 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 97.37α = 90
b = 50.32β = 108.17
c = 77.56γ = 90
Software Package:
Software NamePurpose
AMoREphasing
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-09-27
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-07
    Changes: Data collection, Database references, Derived calculations