Primary Citation of Related Structures:   4V6V
PubMed Abstract: 
Tetracycline resistance protein Tet(O), which protects the bacterial ribosome from binding the antibiotic tetracycline, is a translational GTPase with significant similarity in both sequence and structure to the elongation factor EF-G. Here, we present an atomic model of the Tet(O)-bound 70S ribosome based on our cryo-electron microscopic reconstruction at 9.6-Å resolution. This atomic model allowed us to identify the Tet(O)-ribosome binding sites, which involve three characteristic loops in domain 4 of Tet(O). Replacements of the three amino-acid tips of these loops by a single glycine residue result in loss of Tet(O)-mediated tetracycline resistance. On the basis of these findings, the mechanism of Tet(O)-mediated tetracycline resistance can be explained in molecular detail.
Organizational Affiliation: 
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.