3KOF

Crystal structure of the double mutant F178Y/R181E of E.coli transaldolase B


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.205 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Redesigning the Active Site of Transaldolase TalB from Escherichia coli: New Variants with Improved Affinity towards Nonphosphorylated Substrates.

Schneider, S.Gutierrez, M.Sandalova, T.Schneider, G.Clapes, P.Sprenger, G.A.Samland, A.K.

(2010) Chembiochem 11: 681-690

  • DOI: https://doi.org/10.1002/cbic.200900720
  • Primary Citation of Related Structures:  
    3KOF

  • PubMed Abstract: 

    Recently, we reported on a transaldolase B variant (TalB F178Y) that is able to use dihydroxyacetone (DHA) as donor in aldol reactions. In a second round of protein engineering, we aimed at improving the affinity of this variant towards nonphosphorylated acceptor aldehydes, that is, glyceraldehyde (GA). The anion binding site was identified in the X-ray structure of TalB F178Y where a sulfate ion from the buffer was bound in the active site. Therefore, we performed site-directed saturation mutagenesis at three residues forming the putative phosphate binding site, Arg181, Ser226 and Arg228. The focused libraries were screened for the formation of D-fructose from DHA and d,l-GA by using an adjusted colour assay. The best results with respect to the synthesis of D-fructose were achieved with the TalB F178Y/R181E variant, which exhibited an at least fivefold increase in affinity towards d,l-GA (K(M)=24 mM). We demonstrated that this double mutant can use D-GA, glycolaldehyde and the L-isomer, L-GA, as acceptor substrates. This resulted in preparative synthesis of D-fructose, D-xylulose and L-sorbose when DHA was used as donor. Hence, we engineered a DHA-dependent aldolase that can synthesise the formation of polyhydroxylated compounds from simple and cheap substrates at preparative scale.


  • Organizational Affiliation

    Institute of Microbiology, Universität Stuttgart, Allmandring 31, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Transaldolase B
A, B
337Escherichia coli K-12Mutation(s): 3 
Gene Names: talByaaKb0008JW0007
EC: 2.2.1.2
UniProt
Find proteins for P0A870 (Escherichia coli (strain K12))
Explore P0A870 
Go to UniProtKB:  P0A870
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A870
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.205 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 66.404α = 90
b = 86.397β = 90
c = 130.745γ = 90
Software Package:
Software NamePurpose
ADSCdata collection
MOLREPphasing
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-02-23
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2021-10-13
    Changes: Database references, Derived calculations
  • Version 1.3: 2023-09-06
    Changes: Data collection, Refinement description