2QVV

Porcine Liver Fructose-1,6-bisphosphatase cocrystallized with Fru-2,6-P2 and Zn2+, I(T)-state


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.03 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.201 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Structures of mammalian and bacterial fructose-1,6-bisphosphatase reveal the basis for synergism in AMP/fructose 2,6-bisphosphate inhibition

Hines, J.K.Chen, X.Nix, J.C.Fromm, H.J.Honzatko, R.B.

(2007) J Biol Chem 282: 36121-36131

  • DOI: https://doi.org/10.1074/jbc.M707302200
  • Primary Citation of Related Structures:  
    2QVR, 2QVU, 2QVV

  • PubMed Abstract: 

    Fructose-1,6-bisphosphatase (FBPase) operates at a control point in mammalian gluconeogenesis, being inhibited synergistically by fructose 2,6-bisphosphate (Fru-2,6-P(2)) and AMP. AMP and Fru-2,6-P(2) bind to allosteric and active sites, respectively, but the mechanism responsible for AMP/Fru-2,6-P(2) synergy is unclear. Demonstrated here for the first time is a global conformational change in porcine FBPase induced by Fru-2,6-P(2) in the absence of AMP. The Fru-2,6-P(2) complex exhibits a subunit pair rotation of 13 degrees from the R-state (compared with the 15 degrees rotation of the T-state AMP complex) with active site loops in the disengaged conformation. A three-state thermodynamic model in which Fru-2,6-P(2) drives a conformational change to a T-like intermediate state can account for AMP/Fru-2,6-P(2) synergism in mammalian FBPases. AMP and Fru-2,6-P(2) are not synergistic inhibitors of the Type I FBPase from Escherichia coli, and consistent with that model, the complex of E. coli FBPase with Fru-2,6-P(2) remains in the R-state with dynamic loops in the engaged conformation. Evidently in porcine FBPase, the actions of AMP at the allosteric site and Fru-2,6-P(2) at the active site displace engaged dynamic loops by distinct mechanisms, resulting in similar quaternary end-states. Conceivably, Type I FBPases from all eukaryotes may undergo similar global conformational changes in response to Fru-2,6-P(2) ligation.


  • Organizational Affiliation

    Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Fructose-1,6-bisphosphatase 1
A, B
337Sus scrofaMutation(s): 0 
Gene Names: FBP1FBP
EC: 3.1.3.11
UniProt
Find proteins for P00636 (Sus scrofa)
Explore P00636 
Go to UniProtKB:  P00636
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00636
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.03 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.200 
  • R-Value Observed: 0.201 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 59.038α = 90
b = 165.709β = 90
c = 79.167γ = 90
Software Package:
Software NamePurpose
d*TREKdata scaling
AMoREphasing
CNSrefinement
PDB_EXTRACTdata extraction
CrystalCleardata collection
d*TREKdata reduction

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-10-23
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Derived calculations, Version format compliance
  • Version 1.2: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Derived calculations, Structure summary
  • Version 1.3: 2023-08-30
    Changes: Data collection, Database references, Refinement description, Structure summary