2FYQ

Crystal Structure of the Norwalk Virus Protease


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.211 
  • R-Value Work: 0.185 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

X-ray crystallographic structure of the Norwalk virus protease at 1.5-A resolution.

Zeitler, C.E.Estes, M.K.Venkataram Prasad, B.V.

(2006) J Virol 80: 5050-5058

  • DOI: https://doi.org/10.1128/JVI.80.10.5050-5058.2006
  • Primary Citation of Related Structures:  
    2FYQ, 2FYR

  • PubMed Abstract: 

    Norwalk virus (NV), a member of the Caliciviridae family, is the major cause of acute, epidemic, viral gastroenteritis. The NV genome is a positive sense, single-stranded RNA that encodes three open reading frames (ORFs). The first ORF produces a polyprotein that is processed by the viral cysteine protease into six nonstructural proteins. We have determined the structure of the NV protease to 1.5 and 2.2 A from crystals grown in the absence or presence, respectively, of the protease inhibitor AEBSF [4-(2-aminoethyl)-benzenesulfonyl fluoride]. The protease, which crystallizes as a stable dimer, exhibits a two-domain structure similar to those of other viral cysteine proteases with a catalytic triad composed of His 30, Glu 54, and Cys 139. The native structure of the protease reveals strong hydrogen bond interactions between His 30 and Glu 54, in the favorable syn configuration, indicating a role of Glu 54 during proteolysis. Mutation of this residue to Ala abolished the protease activity, in a fluorogenic peptide substrate assay, further substantiating the role of Glu 54 during proteolysis. These observations contrast with the suggestion, from a previous study of another norovirus protease, that this residue may not have a prominent role in proteolysis (K. Nakamura, Y. Someya, T. Kumasaka, G. Ueno, M. Yamamoto, T. Sato, N. Takeda, T. Miyamura, and N. Tanaka, J. Virol. 79:13685-13693, 2005). In the structure from crystals grown in the presence of AEBSF, Glu 54 undergoes a conformational change leading to disruption of the hydrogen bond interactions with His 30. Since AEBSF was not apparent in the electron density map, it is possible that these conformational changes are due to subtle changes in pH caused by its addition during crystallization.


  • Organizational Affiliation

    Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Chymotrypsin-like cysteine proteinase194Norwalk virusMutation(s): 0 
UniProt
Find proteins for Q83883 (Norovirus (strain Human/NoV/United States/Norwalk/1968/GI))
Explore Q83883 
Go to UniProtKB:  Q83883
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ83883
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.211 
  • R-Value Work: 0.185 
  • Space Group: P 65 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 121.833α = 90
b = 121.833β = 90
c = 51.369γ = 120
Software Package:
Software NamePurpose
d*TREKdata scaling
PHASERphasing
REFMACrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-07-25
    Type: Initial release
  • Version 1.1: 2008-04-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-14
    Changes: Data collection, Database references, Derived calculations