1XNS

Peptide trapped Holliday junction intermediate in Cre-loxP recombination


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.265 
  • R-Value Work: 0.196 
  • R-Value Observed: 0.200 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Peptide trapping of the Holliday junction intermediate in Cre-loxP site-specific recombination.

Ghosh, K.Lau, C.K.Guo, F.Segall, A.M.Van Duyne, G.D.

(2005) J Biol Chem 280: 8290-8299

  • DOI: https://doi.org/10.1074/jbc.M411668200
  • Primary Citation of Related Structures:  
    1XNS, 1XO0

  • PubMed Abstract: 

    Cre recombinase is a prototypical member of the tyrosine recombinase family of site-specific recombinases. Members of this family of enzymes catalyze recombination between specific DNA sequences by cleaving and exchanging one pair of strands between the two substrate sites to form a 4-way Holliday junction (HJ) intermediate and then resolve the HJ intermediate to recombinant products by a second round of strand exchanges. Recently, hexapeptide inhibitors have been described that are capable of blocking the second strand exchange step in the tyrosine recombinase recombination pathway, leading to an accumulation of the HJ intermediate. These peptides are active in the lambda-integrase, Cre recombinase, and Flp recombinase systems and are potentially important tools for both in vitro mechanistic studies and as in vivo probes of cellular function. Here we present biochemical and crystallographic data that support a model where the peptide inhibitor binds in the center of the recombinase-bound DNA junction and interacts with solvent-exposed bases near the junction branch point. Peptide binding induces large conformational changes in the DNA strands of the HJ intermediate, which affect the active site geometries in the recombinase subunits.


  • Organizational Affiliation

    Department of Biochemistry & Biophysics and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.


Macromolecules

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
Recombinase CREC [auth A],
D [auth B]
324Punavirus P1Mutation(s): 0 
Gene Names: CRE
UniProt
Find proteins for P06956 (Escherichia phage P1)
Explore P06956 
Go to UniProtKB:  P06956
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP06956
Sequence Annotations
Expand
  • Reference Sequence
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains LengthOrganismImage
loxP DNAA [auth C]35N/A
Sequence Annotations
Expand
  • Reference Sequence
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains LengthOrganismImage
loxP DNAB [auth D]34N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.265 
  • R-Value Work: 0.196 
  • R-Value Observed: 0.200 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 106.078α = 90
b = 121.529β = 90
c = 177.799γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-12-14
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-23
    Changes: Advisory, Data collection, Database references, Refinement description