Interaction of the TAZ1 domain of the CREB-binding protein with the activation domain of CITED2: regulation by competition between intrinsically unstructured ligands for non-identical binding sites.
De Guzman, R.N., Martinez-Yamout, M.A., Dyson, H.J., Wright, P.E.(2004) J Biol Chem 279: 3042-3049
- PubMed: 14594809 
- DOI: https://doi.org/10.1074/jbc.M310348200
- Primary Citation of Related Structures:  
1R8U - PubMed Abstract: 
The TAZ1 domain of the homologous transcriptional coactivators CREB-binding protein (CBP) and p300 forms a complex with CITED2 (CBP/p300-interacting transactivator with ED-rich tail), inhibiting the activity of the hypoxia inducible factor (HIF-1alpha) and thereby attenuating the cellular response to low tissue oxygen concentration. We report the NMR structure of the CBP TAZ1 domain bound to the activation domain of CIT-ED2. The structure of TAZ1, consisting of four alpha-helices (alpha(1)-alpha(4)) stabilized by three zinc atoms, is very similar in the CITED2 and HIF-1alpha complexes. The activation domain of CITED2 is unstructured when free and folds upon binding, forming a helix (termed alpha(A)) and an extended structure that wraps around TAZ1. The CITED2 alpha(A) helix packs in the TAZ1 alpha(1)/alpha(4) interface, a site that forms weak interactions with the poorly defined aminoterminal alpha-helix of HIF-1alpha. CITED2 and HIF-1alpha both contain a four residue motif, LP(E/Q)L, which binds in the TAZ1 alpha(1)/alpha(2)/alpha(3) junction in each complex. The carboxyl-terminal region of CITED2 forms an extended structure with hydrophobic contacts in the TAZ1 alpha(1)/alpha(3) interface in the site occupied by the HIF-1alpha alpha(B) helix. CITED2 does not bind at all to the TAZ1 site occupied by the HIF-1alpha carboxyl-terminal helix. The HIF-1alpha and CITED2 domains utilize partly overlapping surfaces of TAZ1 to achieve high affinity binding and to compete effectively with each other for interaction with CBP/p300; CITED2 and HIF-1alpha use these binding sites differently to maintain similar binding affinities in order to displace each other in a feedback loop during the hypoxic response.
Organizational Affiliation: 
Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.