Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design.
Baldwin, E.T., Bhat, T.N., Gulnik, S., Hosur, M.V., Sowder 2nd., R.C., Cachau, R.E., Collins, J., Silva, A.M., Erickson, J.W.(1993) Proc Natl Acad Sci U S A 90: 6796-6800
- PubMed: 8393577 
- DOI: https://doi.org/10.1073/pnas.90.14.6796
- Primary Citation of Related Structures:  
1LYA, 1LYB - PubMed Abstract: 
Cathepsin D (EC 3.4.23.5) is a lysosomal protease suspected to play important roles in protein catabolism, antigen processing, degenerative diseases, and breast cancer progression. Determination of the crystal structures of cathepsin D and a complex with pepstatin at 2.5 A resolution provides insights into inhibitor binding and lysosomal targeting for this two-chain, N-glycosylated aspartic protease. Comparison with the structures of a complex of pepstatin bound to rhizopuspepsin and with a human renin-inhibitor complex revealed differences in subsite structures and inhibitor-enzyme interactions that are consistent with affinity differences and structure-activity relationships and suggest strategies for fine-tuning the specificity of cathepsin D inhibitors. Mutagenesis studies have identified a phosphotransferase recognition region that is required for oligosaccharide phosphorylation but is 32 A distant from the N-domain glycosylation site at Asn-70. Electron density for the crystal structure of cathepsin D indicated the presence of an N-linked oligosaccharide that extends from Asn-70 toward Lys-203, which is a key component of the phosphotransferase recognition region, and thus provides a structural explanation for how the phosphotransferase can recognize apparently distant sites on the protein surface.
Organizational Affiliation: 
Structural Biochemistry Program, Program Resources Inc./DynCorp, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702.