1D4Z

CRYSTAL STRUCTURE OF CHEY-95IV, A HYPERACTIVE CHEY MUTANT


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.197 
  • R-Value Observed: 0.197 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Correlated switch binding and signaling in bacterial chemotaxis.

Schuster, M.Zhao, R.Bourret, R.B.Collins, E.J.

(2000) J Biol Chem 275: 19752-19758

  • DOI: https://doi.org/10.1074/jbc.M909908199
  • Primary Citation of Related Structures:  
    1D4Z

  • PubMed Abstract: 

    In Escherichia coli, swimming behavior is mediated by the phosphorylation state of the response regulator CheY. In its active, phosphorylated form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor, which induces a change from counterclockwise to clockwise flagellar rotation. When Ile(95) of CheY is replaced by a valine, increased clockwise rotation correlates with enhanced binding to FliM. A possible explanation for the hyperactivity of this mutant is that residue 95 affects the conformation of nearby residues that potentially interact with FliM. In order to assess this possibility directly, the crystal structure of CheY95IV was determined. We found that CheY95IV is structurally almost indistinguishable from wild-type CheY. Several other mutants with substitutions at position 95 were characterized to establish the structural requirements for switch binding and clockwise signaling at this position and to investigate a general relationship between the two properties. The various rotational phenotypes of these mutants can be explained solely by the amount of phosphorylated CheY bound to the switch, which was inferred from the phosphorylation properties of the mutant CheY proteins and their binding affinities to FliM. Combined genetic, biochemical, and crystallographic results suggest that residue 95 itself is critical in mediating the surface complementarity between CheY and FliM.


  • Organizational Affiliation

    Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CHEMOTAXIS PROTEIN CHEY128Escherichia coliMutation(s): 1 
UniProt
Find proteins for P0AE67 (Escherichia coli (strain K12))
Explore P0AE67 
Go to UniProtKB:  P0AE67
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0AE67
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.197 
  • R-Value Observed: 0.197 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 45.023α = 90
b = 46.849β = 90
c = 53.583γ = 90
Software Package:
Software NamePurpose
AMoREphasing
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1999-10-14
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2018-03-14
    Changes: Database references
  • Version 1.4: 2024-02-07
    Changes: Data collection, Database references, Derived calculations