2NSM

Crystal structure of the human carboxypeptidase N (Kininase I) catalytic domain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.201 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.179 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Crystal structure of the human carboxypeptidase N (kininase I) catalytic domain

Keil, C.Maskos, K.Than, M.Hoopes, J.T.Huber, R.Tan, F.Deddish, P.A.Erdoes, E.G.Skidgel, R.A.Bode, W.

(2007) J Mol Biol 366: 504-516

  • DOI: https://doi.org/10.1016/j.jmb.2006.11.025
  • Primary Citation of Related Structures:  
    2NSM

  • PubMed Abstract: 

    Human carboxypeptidase N (CPN), a member of the CPN/E subfamily of "regulatory" metallo-carboxypeptidases, is an extracellular glycoprotein synthesized in the liver and secreted into the blood, where it controls the activity of vasoactive peptide hormones, growth factors and cytokines by specifically removing C-terminal basic residues. Normally, CPN circulates in blood plasma as a hetero-tetramer consisting of two 83 kDa (CPN2) domains each flanked by a 48 to 55 kDa catalytic (CPN1) domain. We have prepared and crystallized the recombinant C-terminally truncated catalytic domain of human CPN1, and have determined and refined its 2.1 A crystal structure. The structural analysis reveals that CPN1 has a pear-like shape, consisting of a 319 residue N-terminal catalytic domain and an abutting, cylindrically shaped 79 residue C-terminal beta-sandwich transthyretin (TT) domain, more resembling CPD-2 than CPM. Like these other CPN/E members, two surface loops surrounding the active-site groove restrict access to the catalytic center, offering an explanation for why some larger protein carboxypeptidase inhibitors do not inhibit CPN. Modeling of the Pro-Phe-Arg C-terminal end of the natural substrate bradykinin into the active site shows that the S1' pocket of CPN1 might better accommodate P1'-Lys than Arg residues, in agreement with CPN's preference for cleaving off C-terminal Lys residues. Three Thr residues at the distal TT edge of CPN1 are O-linked to N-acetyl glucosamine sugars; equivalent sites in the membrane-anchored CPM are occupied by basic residues probably involved in membrane interaction. In tetrameric CPN, each CPN1 subunit might interact with the central leucine-rich repeat tandem of the cognate CPN2 subunit via a unique hydrophobic surface patch wrapping around the catalytic domain-TT interface, exposing the two active centers.


  • Organizational Affiliation

    Arbeitsgruppe Proteinaseforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Planegg-Martinsried, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Carboxypeptidase N catalytic chain439Homo sapiensMutation(s): 0 
EC: 3.4.17.3
UniProt & NIH Common Fund Data Resources
Find proteins for P15169 (Homo sapiens)
Explore P15169 
Go to UniProtKB:  P15169
GTEx:  ENSG00000120054 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP15169
Glycosylation
Glycosylation Sites: 3Go to GlyGen: P15169-1
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.201 
  • R-Value Work: 0.179 
  • R-Value Observed: 0.179 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 150.03α = 90
b = 150.03β = 90
c = 54.91γ = 120
Software Package:
Software NamePurpose
DNAdata collection
PHASERphasing
CNSrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-04-24
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Advisory, Data collection, Database references, Derived calculations, Structure summary
  • Version 1.4: 2023-10-25
    Changes: Advisory, Data collection, Database references, Refinement description, Structure summary