1FYJ

SOLUTION STRUCTURE OF MULTI-FUNCTIONAL PEPTIDE MOTIF-1 PRESENT IN HUMAN GLUTAMYL-PROLYL TRNA SYNTHETASE (EPRS).


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Structural analysis of multifunctional peptide motifs in human bifunctional tRNA synthetase: identification of RNA-binding residues and functional implications for tandem repeats.

Jeong, E.J.Hwang, G.S.Kim, K.H.Kim, M.J.Kim, S.Kim, K.S.

(2000) Biochemistry 39: 15775-15782

  • DOI: https://doi.org/10.1021/bi001393h
  • Primary Citation of Related Structures:  
    1FYJ

  • PubMed Abstract: 

    Human bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) contains three tandem repeats linking the two catalytic domains. These repeated motifs have been shown to be involved in protein-protein and protein-nucleic acid interactions. The single copy of the homologous motifs has also been found in several different aminoacyl-tRNA synthetases. The solution structure of repeat 1 (EPRS-R1) and the secondary structure of the whole appended domain containing three repeated motifs in EPRS (EPRS-R123) was determined by nuclear magnetic resonance (NMR) spectroscopy. EPRS-R1 consists of two helices (residues 679-699 and 702-721) arranged in a helix-turn-helix, which is similar to other RNA binding proteins and the j-domain of DnaJ, and EPRS-R123 is composed of three helix-turn-helix motifs linked by an unstructured loop. When tRNA is bound to the appended domain, chemical shifts of several residues in each repeat are perturbed. However, the perturbed residues in each repeat are not the same although they are in the same binding surface, suggesting that each repeat in the appended domain is dynamically arranged to maximize contacts with tRNA. The affinity of tRNA to the three-repeated motif was much higher than to the single motif. These results indicate that each of the repeated motifs has a weak intrinsic affinity for tRNA, but the repetition of the motifs may be required to enhance binding affinity. Thus, the results of this work gave information on the RNA-binding mode of the multifunctional peptide motif attached to different ARSs and the functional reason for the repetition of this motif.


  • Organizational Affiliation

    Structural Biology Center, Korea Institute of Science and Technology (KIST), Cheongryang Box 131, Seoul, 130-650, Korea.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
MULTIFUNCTIONAL AMINOACYL-TRNA SYNTHETASE57Homo sapiensMutation(s): 0 
EC: 6.1.1.17 (PDB Primary Data), 6.1.1.15 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for P07814 (Homo sapiens)
Explore P07814 
Go to UniProtKB:  P07814
PHAROS:  P07814
GTEx:  ENSG00000136628 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP07814
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-03-14
    Type: Initial release
  • Version 1.1: 2007-10-21
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-23
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2024-05-29
    Changes: Data collection