1N2K

Crystal structure of a covalent intermediate of endogenous human arylsulfatase A


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.75 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.202 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 2.0 of the entry. See complete history


Literature

Crystal structure of a covalent intermediate of endogenous human arylsulfatase A.

Chruszcz, M.Laidler, P.Monkiewicz, M.Ortlund, E.Lebioda, L.Lewinski, K.

(2003) J Inorg Biochem 96: 386-392

  • DOI: https://doi.org/10.1016/s0162-0134(03)00176-4
  • Primary Citation of Related Structures:  
    1N2K, 1N2L

  • PubMed Abstract: 

    The structures of human arylsulfatase A crystals soaked in solutions containing 4-methylumbelliferyl phosphate and O-phospho-DL-tyrosine have been determined at 2.7- and 3.2-A resolution, respectively. The formylglycine in position 69, a residue crucial for catalytic activity, was unambiguously identified in both structures as forming a covalent bond to the phosphate moiety. A hydroxyl group is present at the Cbeta of residue 69 and the formation of one out of two possible stereomeric forms is strongly favoured. The structures confirm the importance of the gem-diol intermediate in the arylsulfatase's catalytic mechanism. The presence of an apparently stable covalent bond is consistent with the weak phosphatase activity observed for human arylsulfatase A. The structures of the complexes suggest that phosphate ions and phosphate esters inhibit arylsulfatase in non-covalent and covalent modes, respectively. The metal ion present in the active site of arylsulfatase A isolated from human placenta is Ca(2+) and not Mg(2+) as was found in the structure of the recombinant enzyme.


  • Organizational Affiliation

    Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060, Krakow, Poland.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ARYLSULFATASE A489Homo sapiensMutation(s): 1 
EC: 3.1.6.8
UniProt & NIH Common Fund Data Resources
Find proteins for P15289 (Homo sapiens)
Explore P15289 
Go to UniProtKB:  P15289
PHAROS:  P15289
GTEx:  ENSG00000100299 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP15289
Glycosylation
Glycosylation Sites: 2Go to GlyGen: P15289-1
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
B
2N-Glycosylation
Glycosylation Resources
GlyTouCan:  G42666HT
GlyCosmos:  G42666HT
GlyGen:  G42666HT
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
FGP
Query on FGP
A
L-PEPTIDE LINKINGC3 H8 N O7 PSER
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.75 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.202 
  • Space Group: I 4 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 131.52α = 90
b = 131.52β = 90
c = 192.17γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-12-23
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2018-07-04
    Changes: Data collection
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Advisory, Atomic model, Data collection, Database references, Derived calculations, Non-polymer description, Structure summary