4CCX

ALTERING SUBSTRATE SPECIFICITY AT THE HEME EDGE OF CYTOCHROME C PEROXIDASE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Work: 0.200 
  • R-Value Observed: 0.200 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Altering substrate specificity at the heme edge of cytochrome c peroxidase.

Wilcox, S.K.Jensen, G.M.Fitzgerald, M.M.McRee, D.E.Goodin, D.B.

(1996) Biochemistry 35: 4858-4866

  • DOI: https://doi.org/10.1021/bi952929f
  • Primary Citation of Related Structures:  
    3CCX, 4CCX

  • PubMed Abstract: 

    Two mutants of cytochrome c peroxidase (CCP) are reported which exhibit unique specificities toward oxidation of small substrates. Ala-147 in CCP is located near the delta-meso edge of the heme and along the solvent access channel through which H2O2 is thought to approach the active site. This residue was replaced with Met and Tyr to investigate the hypothesis that small molecule substrates are oxidized at the exposed delta-meso edge of the heme. X-ray crystallographic analyses confirm that the side chains of A147M and A147Y are positioned over the delta-meso heme position and might therefore modify small molecule access to the oxidized heme cofactor. Steady-state kinetic measurements show that cytochrome c oxidation is enhanced 3-fold for A147Y relative to wild type, while small molecule oxidation is altered to varying degrees depending on the substrate and mutant. For example, oxidation of phenols by A147Y is reduced to less than 20% relative to the wild-type enzyme, while Vmax/e for oxidation of other small molecules is less affected by either mutation. However, the "specificity" of aniline oxidation by A147M, i.e., (Vmax/e)/Km, is 43-fold higher than in wild-type enzyme, suggesting that a specific interaction for aniline has been introduced by the mutation. Stopped-flow kinetic data show that the restricted heme access in A147Y or A147M slows the reaction between the enzyme and H202, but not to an extent that it becomes rate limiting for the oxidation of the substrates examined. The rate constant for compound ES formation with A147Y is 2.5 times slower than wild-type CCP. These observations strongly support the suggestion that small molecule oxidations occur at sites on the enzyme distinct from those utilized by cytochrome c and that the specificity of small molecule oxidation can be significantly modulated by manipulating access to the heme edge. The results help to define the role of alternative electron transfer pathways in cytochrome c peroxidase and may have useful applications in improving the specificity of peroxidase with engineered function.


  • Organizational Affiliation

    Department of Molecular Biology, The Scripps Research Institute, La Jolla, Calfornia 92037, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CYTOCHROME C PEROXIDASE294Saccharomyces cerevisiaeMutation(s): 0 
EC: 1.11.1.5
UniProt
Find proteins for P00431 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P00431 
Go to UniProtKB:  P00431
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00431
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
HEM
Query on HEM

Download Ideal Coordinates CCD File 
B [auth A]PROTOPORPHYRIN IX CONTAINING FE
C34 H32 Fe N4 O4
KABFMIBPWCXCRK-RGGAHWMASA-L
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Work: 0.200 
  • R-Value Observed: 0.200 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 105.2α = 90
b = 74.3β = 90
c = 45.4γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1995-07-10
    Type: Initial release
  • Version 1.1: 2008-03-25
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-11-29
    Changes: Advisory, Derived calculations, Other
  • Version 1.4: 2024-02-28
    Changes: Advisory, Data collection, Database references, Derived calculations