2POJ

NMR Solution Structure of the Inhibitor-Free State of Macrophage Metalloelastase (MMP-12)


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Solution Structure of Inhibitor-Free Human Metalloelastase (MMP-12) Indicates an Internal Conformational Adjustment.

Bhaskaran, R.Palmier, M.O.Bagegni, N.A.Liang, X.Van Doren, S.R.

(2007) J Mol Biol 374: 1333-1344

  • DOI: https://doi.org/10.1016/j.jmb.2007.10.028
  • Primary Citation of Related Structures:  
    2POJ

  • PubMed Abstract: 

    Macrophage metalloelastase or matrix metalloproteinase-12 (MMP-12) appears to exacerbate atherosclerosis, emphysema, aortic aneurysm, rheumatoid arthritis, and inflammatory bowel disease. An inactivating E219A mutation, validated by crystallography and NMR spectra, prevents autolysis of MMP-12 and allows us to determine its NMR structure without an inhibitor. The structural ensemble of the catalytic domain without an inhibitor is based on 2813 nuclear Overhauser effects (NOEs) and has an average RMSD to the mean structure of 0.25 A for the backbone and 0.61 A for all heavy atoms for residues Trp109-Gly263. Compared to crystal structures of MMP-12, helix B (hB) at the active site is unexpectedly more deeply recessed under the beta-sheet. This opens a pocket between hB and beta-strand IV in the active-site cleft. Both hB and an internal cavity are shifted toward beta-strand I, beta-strand III, and helix A on the back side of the protease. About 25 internal NOE contacts distinguish the inhibitor-free solution structure and indicate hB's greater depth and proximity to the sheet and helix A. Line broadening and multiplicity of amide proton NMR peaks from hB are consistent with hB undergoing a slow conformational exchange among subtly different environments. Inhibitor-binding-induced perturbations of the NMR spectra of MMP-1 and MMP-3 map to similar locations across MMP-12 and encompass the internal conformational adjustments. Evolutionary trace analysis suggests a functionally important network of residues that encompasses most of the locations adjusting in conformation, including 18 residues with NOE contacts unique to inhibitor-free MMP-12. The conformational change, sequence analysis, and inhibitor perturbations of NMR spectra agree on the network they identify between structural scaffold and the active site of MMPs.


  • Organizational Affiliation

    Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Macrophage metalloelastase164Homo sapiensMutation(s): 1 
Gene Names: MMP12HME
EC: 3.4.24.65
UniProt & NIH Common Fund Data Resources
Find proteins for P39900 (Homo sapiens)
Explore P39900 
Go to UniProtKB:  P39900
PHAROS:  P39900
GTEx:  ENSG00000262406 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP39900
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-12-04
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2021-10-20
    Changes: Data collection, Database references, Derived calculations