2LKV

Staphylococcal Nuclease PHS variant


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 80 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.0 of the entry. See complete history


Literature

Mannosylglycerate stabilizes staphylococcal nuclease with restriction of slow beta-sheet motions.

Pais, T.M.Lamosa, P.Matzapetakis, M.Turner, D.L.Santos, H.

(2012) Protein Sci 21: 1126-1137

  • DOI: https://doi.org/10.1002/pro.2100
  • Primary Citation of Related Structures:  
    2LKV

  • PubMed Abstract: 

    Mannosylglycerate is a compatible solute typical of thermophilic marine microorganisms that has a remarkable ability to protect proteins from thermal denaturation. This ionic solute appears to be a universal stabilizing agent, but the extent of protection depends on the specific protein examined. To understand how mannosylglycerate confers protection, we have been studying its influence on the internal motions of a hyperstable staphylococcal nuclease (SNase). Previously, we found a correlation between the magnitude of protein stabilization and the restriction of fast backbone motions. We now report the effect of mannosylglycerate on the fast motions of side-chains and on the slower unfolding motions of the protein. Side-chain motions were assessed by (13)CH(3) relaxation measurements and model-free analysis while slower unfolding motions were probed by H/D exchange measurements at increasing concentrations of urea. Side-chain motions were little affected by the presence of different concentrations of mannosylglycerate or even by the presence of urea (0.25M), and show no correlation with changes in the thermodynamic stability of SNase. Native hydrogen exchange experiments showed that, contrary to reports on other stabilizing solutes, mannosylglycerate restricts local motions in addition to the global motions of the protein. The protein unfolding/folding pathway remained undisturbed in the presence of mannosylglycerate but the solute showed a specific effect on the local motions of β-sheet residues. This work reinforces the link between solute-induced stabilization and restriction of protein motions at different timescales, and shows that the solute preferentially affects specific structural elements of SNase.


  • Organizational Affiliation

    Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Thermonuclease149Staphylococcus aureus subsp. aureus MW2Mutation(s): 2 
Gene Names: nucMW0769
EC: 3.1.31.1
UniProt
Find proteins for Q8NXI6 (Staphylococcus aureus (strain MW2))
Explore Q8NXI6 
Go to UniProtKB:  Q8NXI6
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8NXI6
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 80 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2012-09-12
    Type: Initial release