2KQ3

Solution structure of SNase140


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Importance of the C-Terminal Loop L137-S141 for the Folding and Folding Stability of Staphylococcal Nuclease

Wang, M.Feng, Y.Yao, H.Wang, J.

(2010) Biochemistry 49: 4318-4326

  • DOI: https://doi.org/10.1021/bi100118k
  • Primary Citation of Related Structures:  
    2KQ3

  • PubMed Abstract: 

    The role of the C-terminal loop L137-S141 in the folding and folding stability of staphylococcal nuclease (SNase) was investigated by deletion mutation. The C-terminal truncated SNase fragments, SNase137, SNase139, SNase140, and SNase141 containing residues 1-137, 1-139, 1-140, and 1-141, respectively, were adopted in this study. Folding states of these four SNase fragments were analyzed by circular dichroism and fluorescence measurements. The solution structure of SNase140 was determined and compared to those of SNase141 and native SNase using the heteronuclear NMR method. The results showed that folding of the four SNase fragments is correlated with the folding of helix alpha3. With the chain length extending from L137 and I139 to S141, folding of the fragments progressively approached to the tertiary folding of native SNase, and the folding stability was enhanced. These observations revealed that the C-terminal loop L137-S141 has profound effect not only on the folding of helix alpha3 but also on the stabilizing folding of both the alpha- and beta-subdomains of SNase. Analysis indicates that stabilizing folding of the SNase and SNase fragments depends to a large extent on the hydrophobic packing interactions in both the C-terminal local structural region surrounding W140 including the loop L137-S141 and the N-terminal local structural region of the "beta-barrel" hydrophobic core.


  • Organizational Affiliation

    National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Thermonuclease140Staphylococcus aureusMutation(s): 0 
EC: 3.1.31.1
UniProt
Find proteins for A5A523 (Staphylococcus aureus)
Explore A5A523 
Go to UniProtKB:  A5A523
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupA5A523
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-05-26
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2020-02-26
    Changes: Data collection, Derived calculations, Other
  • Version 1.3: 2023-06-14
    Changes: Database references, Other