1MGX

COAGULATION FACTOR, MG(II), NMR, 7 STRUCTURES (BACKBONE ATOMS ONLY)


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Identification of the phospholipid binding site in the vitamin K-dependent blood coagulation protein factor IX.

Freedman, S.J.Blostein, M.D.Baleja, J.D.Jacobs, M.Furie, B.C.Furie, B.

(1996) J Biol Chem 271: 16227-16236

  • DOI: https://doi.org/10.1074/jbc.271.27.16227
  • Primary Citation of Related Structures:  
    1MGX

  • PubMed Abstract: 

    The blood coagulation and regulatory proteins that contain gamma-carboxyglutamic acid are a part of a unique class of membrane binding proteins that require calcium for their interaction with cell membranes. Following protein biosynthesis, glutamic acids on these proteins are converted to gamma-carboxyglutamic acid (Gla) in a reaction that requires vitamin K as a cofactor. The vitamin K-dependent proteins undergo a conformational transition upon metal ion binding, but only calcium ions mediate protein-phospholipid interaction. To identify the site on Factor IX that is required for phospholipid binding, we have determined the three-dimensional structure of the Factor IX Gla domain bound to magnesium ions by NMR spectroscopy. By comparison of this structure to that of the Gla domain bound to calcium ions, we localize the membrane binding site to a highly ordered structure including residues 1-11 of the Gla domain. In the presence of Ca2+, Factor IX Gla domain peptides that contain the photoactivatable amino acid p-benzoyl-L-phenylalanine at positions 6 or 9 cross-link to phospholipid following irradiation, while peptides lacking this amino acid analog or with this analog at position 46 did not cross-link. These results indicate that the NH2 terminus of the Gla domain, specifically including leucine 6 and phenylalanine 9 in the hydrophobic patch, is the contact surface on Factor IX that interacts with the phospholipid bilayer.


  • Organizational Affiliation

    Center for Hemostasis and Thrombosis Research, Division of Hematology-Oncology, New England Medical Center, Boston, Massachusetts 02111, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
COAGULATION FACTOR IX47Homo sapiensMutation(s): 0 
EC: 3.4.21.22
UniProt & NIH Common Fund Data Resources
Find proteins for P00740 (Homo sapiens)
Explore P00740 
Go to UniProtKB:  P00740
PHAROS:  P00740
GTEx:  ENSG00000101981 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00740
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
CGU
Query on CGU
A
L-PEPTIDE LINKINGC6 H9 N O6GLU
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1996-11-08
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-11-29
    Changes: Derived calculations, Other