Structural genomics of the severe acute respiratory syndrome coronavirus: nuclear magnetic resonance structure of the protein nsP7.
Peti, W., Johnson, M.A., Herrmann, T., Neuman, B.W., Buchmeier, M.J., Nelson, M., Joseph, J., Page, R., Stevens, R.C., Kuhn, P.(2005) J Virol 79: 12905-12913
- PubMed: 16188992 
- DOI: https://doi.org/10.1128/JVI.79.20.12905-12913.2005
- Primary Citation of Related Structures:  
1YSY - PubMed Abstract: 
Here, we report the three-dimensional structure of severe acute respiratory syndrome coronavirus (SARS-CoV) nsP7, a component of the SARS-CoV replicase polyprotein. The coronavirus replicase carries out regulatory tasks involved in the maintenance, transcription, and replication of the coronavirus genome. nsP7 was found to assume a compact architecture in solution, which is comprised primarily of helical secondary structures. Three helices (alpha2 to alpha4) form a flat up-down-up antiparallel alpha-helix sheet. The N-terminal segment of residues 1 to 22, containing two turns of alpha-helix and one turn of 3(10)-helix, is packed across the surface of alpha2 and alpha3 in the helix sheet, with the alpha-helical region oriented at a 60 degrees angle relative to alpha2 and alpha3. The surface charge distribution is pronouncedly asymmetrical, with the flat surface of the helical sheet showing a large negatively charged region adjacent to a large hydrophobic patch and the opposite side containing a positively charged groove that extends along the helix alpha1. Each of these three areas is thus implicated as a potential site for protein-protein interactions.
Organizational Affiliation: 
Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.