1H1X

Sperm whale Myoglobin mutant T67R S92D


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.153 
  • R-Value Work: 0.119 
  • R-Value Observed: 0.121 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Engineering Peroxidase Activity in Myoglobin: The Haem Cavity Structure and Peroxide Activation in the T67R/S92D Mutant and its Derivative Reconstituted with Protohaemin-L-Histidine.

Roncone, R.Monzani, E.Murtas, M.Battaini, G.Pennati, A.Sanangelantoni, A.M.Zuccotti, S.Bolognesi, M.Casella, L.

(2004) Biochem J 377: 717

  • DOI: https://doi.org/10.1042/BJ20030863
  • Primary Citation of Related Structures:  
    1H1X

  • PubMed Abstract: 

    Atomic co-ordinates and structure factors for the T67R/S92D metMbCN mutant have been deposited with the Protein Data Bank, under accession codes 1h1x and r1h1xsf, respectively. Protein engineering and cofactor replacement have been employed as tools to introduce/modulate peroxidase activity in sperm whale Mb (myoglobin). Based on the rationale that haem peroxidase active sites are characterized by specific charged residues, the Mb haem crevice has been modified to host a haem-distalpropionate Arg residue and a proximal Asp, yielding the T67R/S92D Mb mutant. To code extra conformational mobility around the haem, and to increase the peroxidase catalytic efficiency, the T67R/S92D Mb mutant has been subsequently reconstituted with protohaem-L-histidine methyl ester, yielding a stable derivative, T67R/S92D Mb-H. The crystal structure of T67R/S92D cyano-metMb (1.4 A resolution; R factor, 0.12) highlights a regular haem-cyanide binding mode, and the role for the mutated residues in affecting the haem propionates as well as the neighbouring water structure. The conformational disorder of the haem propionate-7 is evidenced by the NMR spectrum of the mutant. Ligand-binding studies show that the iron(III) centres of T67R/S92D Mb, and especially of T67R/S92D Mb-H, exhibit higher affinity for azide and imidazole than wild-type Mb. In addition, both protein derivatives react faster than wild-type Mb with hydrogen peroxide, showing higher peroxidase-like activity towards phenolic substrates. The catalytic efficiency of T67R/S92D Mb-H in these reactions is the highest so far reported for Mb derivatives. A model for the protein-substrate interaction is deduced based on the crystal structure and on the NMR spectra of protein-phenol complexes.


  • Organizational Affiliation

    Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
MYOGLOBIN154Physeter catodonMutation(s): 2 
UniProt
Find proteins for P02185 (Physeter macrocephalus)
Explore P02185 
Go to UniProtKB:  P02185
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP02185
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.153 
  • R-Value Work: 0.119 
  • R-Value Observed: 0.121 
  • Space Group: P 6
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 90.524α = 90
b = 90.524β = 90
c = 45.129γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-10-23
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description